Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Performance Fabrics in Sustainable Design

This course aims to help educate the designer about what performance fabrics are, the content of various fabrics, how they work, and the benefits to a sustainable design in meeting and maximizing your goals of occupant health, safety, well-being, and sustainability. Windows, views, and openings in buildings present the classic battle between form and function. The designer naturally wants the building’s occupants to enjoy views and light, but the solar heat gain from these openings can wreak havoc on sustainable goals. Sophisticated and high-performing solar control fabrics can help reconcile the form and function of light, views, and sustainability.

HSW Justification:
Substantially all of this course is dedicated to a discussion of the health, safety and welfare aspects of performance fabrics through their appropriate specification, their fabrics' chemical composition, their proper use, their ability to meet safety and performance standards, and their aesthetic contribution.

Learning Objective 1:
The student will learn how to analyze shading fabrics for solar light management including energy reduction, glare and outward visibility, using published shading coefficient data.

Learning Objective 2:
The student will be able to list certification requirements for indoor air quality, anti-bacterial protection, flame retardancy, and environmental regulations.

Learning Objective 3:
The student will be able to identify fabric composition options with an emphasis on sustainable design.

Learning Objective 4:
The student will be able to apply their knowledge of performance fabric features to unique, real-world applications in healthcare, hospitality, government, business, and residential projects.

...Read More

Controlled and Connected Luminaires and Design Integration

Program: The Art and Technology of Lighting

This course will review the components and uses of connected luminaires, their specification and the standards and protocols involved in current lighting controls application. Further, this course will review the emergence of the Internet of things, and how it will impact future lighting controls application.Understand the definition, components and function of a connected luminaire.

Learning Objective 1:
Understand the definition, components and function of a connected luminaire.

Learning Objective 2:
Understand how connected lighting systems interact with the Internet of Things (IoT).

Learning Objective 3:
Understand the basic components of a lighting control system and uses with LED technology.

Learning Objective 4:
Understand the specification of connected luminaire systems.

AIA Course Number FP2018-D

 

...Read More

Egress Marking and Illumination ISO-0501

This course is designed to introduce the architect to egress marking systems that are used for ordinary way finding and building evacuation in emergency situations. These signage systems are meant to be selected and installed according to specific standards established by building codes. Additionally, once installed, these systems must be tested to assure their efficacy in case of an emergency. How to select and specify the appropriate markers and the technological solutions available, as well as testing methods, will all be covered in this course.

HSW Justification:
Building exit markings are critical to the health, safety, and welfare of building occupants during emergency situations.

Learning Objective 1:
When this course is complete the student will will understand egress signage obligations as imposed through building codes and standards.

Learning Objective 2:
The student will further understand the various technologies available to address those signage codes and standards.

Learning Objective 3:
And, the student will learn what the requirements are to conduct on-going testing of egress systems after installation.

...Read More

Innovative Solutions for Architectural Challenges

Operable glass walls can provide for flexible interior spaces, safer interior environments, rapid and highly accessible connections to exterior spaces and all the benefits that ensue, such as fresh air, light, unobstructed views and rapid egress in the event of emergency. This course examines how operable glass walls meet those challenges and then shows the application of those principals in several case studies.

...Read More

Exploring Design Trends for K-12 Applications

Addressing student behaviors, improving the learning environment, and enhancing the sustainability of educational buildings with design.

Learning Objective 1:
After reading this article, you should be able to: describe how the inclusive restroom design concept addresses the bad behaviors plaguing bathroom spaces and improves student safety

Learning Objective 2:
After reading this article, you should be able to: summarize the ways that acoustical surfaces, lighting, and HVAC systems are being used to improve the comfort of the learning environment, helping students perform better in class.

Learning Objective 3:
After reading this article, you should be able to: identify various solutions that can be incorporated to heighten security throughout a school.

Learning Objective 4:
After reading this article, you should be able to: explain some of the sustainability strategies making schools more environmentally friendly.

...Read More

Create Intelligent Buildings with Networked Lighting to Improve Tenant Overall Well-Being

This session will present how IoT lighting can be a fundamental platform for smart environments.  Well planned building integration allows a flexible, scalable lighting system to collect the data that ultimately brings more value to the building owner.

At the end of this course, participants will learn:

  1. Define IDA, light pollution, and related terms
  2. Identify the impacts of light pollution
  3. Demonstrate the difference between IDA and non-IDA lighting
  4. Assess the process of establishing IDA certification
...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

HSW Justification:
“Increased evidence shows that indoor environmental conditions substantially influence health and productivity. Building services engineers are interested in improving indoor environments and quantifying the effects. Potential health and productivity benefits are not yet generally considered in conventional economic calculations pertaining to building design and operation. Only initial costs plus energy and maintenance costs are typically considered. A few sample calculations have also shown that many measures to improve indoor air environment are cost-effective when the health and productivity benefits resulting from an improved indoor climate are included in the calculations (Djukanovic et al. 2002, Fisk 2000, Fisk et al. 2003, Hansen 1997, van Kempski 2003, Seppanen and Vuolle 2000, Wargocki, 2003.) This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the built environment.

Learning Objective 1:
Explain how air circulation improves thermal comfort and alertness.

Learning Objective 2:
Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

Learning Objective 3:
Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

Learning Objective 4:
Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

Learning Objective 5:
Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

Improve Occupant Wellness and Productivity with Solar Shading Fabrics

Solar shading devices, while available in numerous weaves, textures, and colors, go beyond contributing to the aesthetics of a space. Specified correctly, solar shading devices can maximize daylighting benefits and contribute to occupant well-being, productivity, and engagement, while mitigating the detrimental effects of UV rays and glare.

Learning Objective 1:
Students will understand the benefits daylighting, including the psychological and physiological well-being of occupants, as well as its drawbacks, such as glare and solar heat gain

Learning Objective 2:
Students will become familiar with the types of solar shading fabrics available for use in commercial settings and their components, including operating systems, weave, color, and openness factor, and the ways in which these contribute to the control of daylighting.

Learning Objective 3:
Students will explore the benefits of solar shading devices that extend beyond light management, such as sound mitigation, sustainability, and antimicrobial properties.

Learning Objective 4:
Students will determine how to select the right fabric for an application, taking into account aesthetics and room conditions

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×